Expected value of sample information calculations in medical decision modeling.
نویسندگان
چکیده
There has been an increasing interest in using expected value of information (EVI) theory in medical decision making, to identify the need for further research to reduce uncertainty in decision and as a tool for sensitivity analysis. Expected value of sample information (EVSI) has been proposed for determination of optimum sample size and allocation rates in randomized clinical trials. This article derives simple Monte Carlo, or nested Monte Carlo, methods that extend the use of EVSI calculations to medical decision applications with multiple sources of uncertainty, with particular attention to the form in which epidemiological data and research findings are structured. In particular, information on key decision parameters such as treatment efficacy are invariably available on measures of relative efficacy such as risk differences or odds ratios, but not on model parameters themselves. In addition, estimates of model parameters and of relative effect measures in the literature may be heterogeneous, reflecting additional sources of variation besides statistical sampling error. The authors describe Monte Carlo procedures for calculating EVSI for probability, rate, or continuous variable parameters in multi parameter decision models and approximate methods for relative measures such as risk differences, odds ratios, risk ratios, and hazard ratios. Where prior evidence is based on a random effects meta-analysis, the authors describe different ESVI calculations, one relevant for decisions concerning a specific patient group and the other for decisions concerning the entire population of patient groups. They also consider EVSI methods for new studies intended to update information on both baseline treatment efficacy and the relative efficacy of 2 treatments. Although there are restrictions regarding models with prior correlation between parameters, these methods can be applied to the majority of probabilistic decision models. Illustrative worked examples of EVSI calculations are given in an appendix.
منابع مشابه
Addressing uncertainty in medical cost-effectiveness analysis implications of expected utility maximization for methods to perform sensitivity analysis and the use of cost-effectiveness analysis to set priorities for medical research.
This paper examines the objectives for performing sensitivity analysis in medical cost-effectiveness analysis and the implications of expected utility maximization for methods to perform such analyses. The analysis suggests specific approaches for optimal decision making under uncertainty and specifying such decisions for subgroups based on the ratio of expected costs to expected benefits, and ...
متن کاملA mixed Bayesian/Frequentist approach in sample size determination problem for clinical trials
In this paper we introduce a stochastic optimization method based ona mixed Bayesian/frequentist approach to a sample size determinationproblem in a clinical trial. The data are assumed to come from a nor-mal distribution for which both the mean and the variance are unknown.In contrast to the usual Bayesian decision theoretic methodology, whichassumes a single decision maker, our method recogni...
متن کاملEstimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample
The partial expected value of perfect information (EVPI) quantifies the expected benefit of learning the values of uncertain parameters in a decision model. Partial EVPI is commonly estimated via a 2-level Monte Carlo procedure in which parameters of interest are sampled in an outer loop, and then conditional on these, the remaining parameters are sampled in an inner loop. This is computational...
متن کاملCalculating partial expected value of perfect information via Monte Carlo sampling algorithms.
Partial expected value of perfect information (EVPI) calculations can quantify the value of learning about particular subsets of uncertain parameters in decision models. Published case studies have used different computational approaches. This article examines the computation of partial EVPI estimates via Monte Carlo sampling algorithms. The mathematical definition shows 2 nested expectations, ...
متن کاملSystems Risk Analysis UsingHierarchical Modeling
A fresh look at the system analysis helped us in finding a new way of calculating the risks associated with the system. The author found that, due to the shortcomings of RPN, more researches needed to be done in this area to use RPNs as a new source of information for system risk analysis. It is the purpose of this article to investigate the fundamental concepts of failure modes and effects ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical decision making : an international journal of the Society for Medical Decision Making
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2004